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A diastereoselective synthesis of 4-azidotetrahydropyrans
via the Prins-cyclization
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Abstract—A three component coupling of aldehydes, homoallylic alcohols and sodium azide is achieved in the presence of trifluo-
roacetic acid in dichloromethane to produce 4-azidotetrahydropyran derivatives in high yields with all cis-selectivity. The use of
trifluoroacetic acid makes this procedure simple and cost-effective.
� 2007 Elsevier Ltd. All rights reserved.
N3
The 4-aminotetrahydropyran skeleton is a core structure
in a number of natural products such as ambruticins VS,
glycamino acid and others.1,2 Tetrahydropyran deriva-
tives are generally prepared via Prins-cyclization using
acid catalysis.3,4 Multicomponent one-pot reactions are
highly important because of their wide range of applica-
tions in pharmaceutical chemistry for production of
structural scaffolds and combinatorial libraries for drug
discovery.5 Organic azides are versatile building blocks
for the synthesis of natural products and nitrogen-con-
taining heterocycles such as triazoles, tetrazoles and iso-
cyanates of pharmacological relevance.6 Recently, they
have been somewhat popularized due to their pivitol
role in the emerging field of ‘click chemistry’,7 and in
particular, since the discovery of the Cu(I) catalyzed
Huisgen8 cycloaddition between organic azides and ter-
minal alkynes.9 This powerful and reliable bond-form-
ing process has found widespread application, for
example, in combinatorial drug discovery,10 material
science11 and bioconjugation.12,13 The development of
a simple and more versatile approach for the direct
preparation of 4-azidotetrahydropyrans would be very
useful for the synthesis of natural products possessing
a 4-aminotetrahydropyran framework.

In continuation of our research on the Prins-cycliza-
tion,14 we report a more versatile approach to 4-azido-
tetrahydropyran derivatives via a three component
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coupling (3CC) involving condensation of a homoallylic
alcohol with an aldehyde and sodium azide. The 3CC
reaction was carried out in the presence of trifluoroace-
tic acid. This approach allows for the preparation of a
diverse range of 4-azidotetrahydropyrans. Accordingly,
we initially studied the three component coupling of
benzaldehyde (1), but-3-en-1-ol (2) and sodium azide
using 10 equiv of trifluoroacetic acid in dichlorometh-
ane. The reaction went to completion within 5 h at room
temperature and the product, 4-azido-2-phenyl-tetra-
hydro-2H-pyran 3a was isolated in 89% yield with all
cis-selectivity (Scheme 1).

This result encouraged us to extend this process to var-
ious aldehydes and homoallylic alcohols. Interestingly,
aryl aldehydes such as 3,4,5-trimethoxybenzaldehyde,
p-methylbenzaldehyde, p-bromobenzaldehyde and p-
nitrobenzaldehyde underwent smooth coupling with
but-3-en-1-ol to give the corresponding 2,4-disubstituted
tetrahydropyrans in high yields (Table 1, entries b–e). In
addition, aliphatic aldehydes such as isobutyraldehyde,
cyclohexanecarboxaldehyde, n-pentanal, n-decanal and
3-phenylpropanaldehyde also participated well in this
O+ CH2Cl2, r.t.
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Table 1. Preparation of 4-azidotetrahydropyran derivatives using TFA/NaN3

Entry Homoallylic alcohol Aldehyde Azidopyrana Time (h) Yieldb (%)

a

OH CHO

O

N3

5.0 89

b
OH

MeO

CHOMeO

OMe

O

MeO

N3

MeO

OMe

6.0 84

c
OH CHO

Me O

N3

Me

5.5 90

d
OH CHO

Br O

N3

Br

5.5 91

e
OH

CHO

O2N O

N3

O2N

6.5 80

f
OH

CHO

O

N3

3.0 86

g
OH CHO

O

N3

4.0 91

h
OH

CHO

O

N3

3.5 87

i
OH

CHO

O

N3

3.5 90

j
OH CHO

O

N3

4.5 83

k

OH
CHO

O

N3

6.5 85
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Table 1 (continued)

Entry Homoallylic alcohol Aldehyde Azidopyrana Time (h) Yieldb (%)

l

OH

Me

CHO

Me
O

N3

Me Me

6.0 88

m

OH

Cl

CHO

Cl O

N3

Cl Cl

6.5 84

n

OH
CHO

O

N3

4.0 91

o
OH

CHO

O

N3

3.5 92

a All products were characterized by 1H NMR, IR and mass spectroscopy.
b Isolated and unoptimized yield.
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reaction (Table 1, entries f–j). Aryl substituted homo-
allylic alcohols also reacted efficiently with aryl alde-
hydes to produce 2,4,6-trisubstituted tetrahydropyran
derivatives (Table 1, entries k–m). The coupling between
1-cyclohexylbut-3-en-1-ol and cyclohexanecarboxalde-
hyde gave the symmetric 4-azido-2,6-dicyclohexyltetra-
hydro-2H-pyran with all cis-configuration (Table 1,
entry n; Scheme 2).

Similarly, the coupling of non-1-en-4-ol with n-hexanal
afforded the symmetrical 4-azido-2,6-dipentyltetrahy-
dro-2H-pyran under identical conditions (Table 1, entry
o). However, no reaction was observed in the absence of
trifluoroacetic acid even after an extended reaction time
(12 h). As solvent, dichloromethane gave the best result.
In all cases, the reactions proceeded rapidly at room
temperature under mild conditions. The reactions were
clean and the products were obtained in excellent yields
and with high diastereoselectivity as determined from
the NMR spectra of the crude products. Only a single
diastereoisomer was obtained from each reaction, the
structure of which was confirmed by coupling constants
(J values) and NOE experiments.15 The formation of the
products can be explained by hemi-acetal formation fol-
+ CH2

TFACHO
OH

Scheme 2.
lowed by a Prins-type cyclization and subsequent azida-
tion (Scheme 3).

A rationale for the all cis-selectivity involves formation
of an (E)-oxocarbenium ion via a chair-like transition
state, which has increased stability relative to the open
oxocarbenium ion due to delocalization. The optimal
geometry for this delocalization places the hydrogen
atom at C4 in a pseudo-axial position, which favours
equatorial attack of the nucleophile.16 Lewis acid cata-
lysts including metal halides such as InCl3, InBr3, BiCl3
and ZrCl4 or metal triflates such as Sc(OTf)3, In(OTf)3

and Bi(OTf)3 failed to give the desired product. Further-
more, solid acids such as Montmorillonte KSF clay,
PMA/SiO2 and HClO4/SiO2 were also found to be inef-
fective. Surprisingly, no product was obtained in acetic
acid. The scope and generality of this process is illus-
trated with respect to various aldehydes and homoallylic
alcohols (Table 1).17

In conclusion, we have developed a three component,
one-pot strategy for the synthesis of highly substituted
4-azidotetrahydropyrans via Prins-cyclization and azi-
dation using trifluoroacetic acid as promoter. This meth-
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od provides a direct access to 2,4-di- and 2,4,6-trisubsti-
tuted azidotetrahydropyran derivatives.
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CDCl3): d 0.89 (d, 3H, J = 6.5 Hz), 0.93 (d, 3H,
J = 6.5 Hz), 1.68–2.07 (m, 5H), 2.94 (m, 1H), 3.27–
3.48 (m, 2H), 4.02 (m, 1H). LCMS: m/z (%): (M+Na)
192. HRMS Calcd for C8H15N3ONa: 192.1112. Found:
192.1120. Compound 3n: 2,6-Dicyclohexyltetrahydro-2H-
4-pyranyl azide: Liquid, IR (KBr): m 2925, 2853, 2092,
1781, 1705, 1450, 1364, 1266, 1166, 1070, 1039, 996 cm�1.
1H NMR (200 MHz, CDCl3): d 0.75–1.47 (m, 20H),
1.40–1.98 (m, 6H), 3.02 (dd, 1H, J = 6.8, 10.5 Hz), 4.09
(dd, 2H, J = 6.8, 14.3 Hz). LCMS: m/z (%): (M+Na) 314.
HRMS Calcd for C17H29N3ONa: 314.2208. Found:
314.2217.
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